Preview

Supportive Therapy in Oncology

Advanced search

Modern approaches to the treatment of infections caused by Pseudomonas aeruginosa with multiple antimicrobial resistance. What a practicing physician should know

https://doi.org/10.17650/3034-2473-2025-2-2-44-60

Abstract

The rise of antimicrobial resistance is a pressing problem worldwide. Oncology patients are at risk of developing infections caused by multidrug-resistant bacteria. This is associated with frequent visits of patients to hospitals for chemotherapy courses, long periods of neutropenia in oncohematologic patients and after hematopoietic stem cell transplantation, repeated courses of antibiotic therapy, surgical interventions, etc.

Aim of this work – to familiarize physicians with the mechanisms of antimicrobial resistance of Pseudomonas aeruginosa (P. aeruginosa), the possibilities and limitations of new antibiotics with antipseudomonal activity, and to help with the choice of antibiotic therapy for infections caused by multidrug-resistant P. aeruginosa and infections difficult to treat due to P. aeruginosa resistance.

The summarized data of the Russian online antimicrobial resistance research platform AMRmap on the sensitivity and resistance of P. aeruginosa in Russia for the period 2020–2022 is presented. Recommendations on treatment of infections caused by multidrug-resistant P. aeruginosa and infections difficult to treat due to P. aeruginosa resistance of the Infectious Diseases Society of America (2024), the European Society of Clinical Microbiology and Infectious Diseases (2022) and Russian guidelines on diagnosis and antimicrobial therapy of infections caused by multidrug-resistant microorganisms (2024) were analyzed. The possibilities of overcoming the mechanisms of P. aeruginosa resistance in new beta-lactams and selected antibiotics with antipseudomonal activity are considered.

About the Author

Natalia Yu. Epifanova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Natalia Yuryevna Epifanova.

24, Kashirskoye Shosse, Moscow 115478.



References

1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399(10325):629–55. DOI: 10.1016/S0140-6736(21)02724-0

2. Chebotar I.V., Bocharova Yu.A., Mayanskiy N.A. Mechanisms of resistance of Pseudomonas aeruginosa to antibiotics and their regulation. 19. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2017;4:308–19. (In Russ.).

3. Skleenova E.Yu., Azizov I.S., Shek E.A. et al. Pseudomonas aeruginosa in the Russian Federation: the history of one of the most successful nosocomial pathogens. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2018;20(3):164–71. (In Russ.).

4. Butranova O.I., Zyryanov S.K., Gorbacheva A.A., Putsman G.A. Analysis of the structure and indicators of antibiotic resistance of infectious agents in patients in intensive care units of a multidisciplinary hospital. Kachestvennaya klinicheskaya praktika = Qualitative Clinical Practice 2023(4):4–14. (In Russ.). DOI: 10.37489/2588-0519-2023-4-4-14

5. Safaei H.G., Moghim S., Isfahani B.N. et al. Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa isolates from burn patients. Adv Biomed Res 2017;6:74. DOI: 10.4103/abr.abr_239_16

6. Organization and conduct of microbiological monitoring in medical organizations. Methodological recommendations MR 3.1.0346-24. Approved by the Federal Service for Supervision of Consumer Rights Protection and Human Welfare on 26.04.2024. (In Russ.).

7. Kuzmenkov A.Yu., Vinogradova A.G., Trushin I.V. et al. AMRmap is an antibiotic resistance monitoring system in Russia. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2021;23(2): 198–204. (In Russ.). DOI: 10.36488/cmac.2021.2.198-204

8. Vinogradova A.G., Kuzmenkov A.Yu. Practical application of AMRmap: elements of the “from general to particular” approach using Klebsiella pneumoniae as an example. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy2019;21(2): 181–6. (In Russ.). DOI: 10.36488/cmac.2019.2.181-186

9. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Available at: https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013–508.pdf. Date of access: 17.03.2019.

10. Tamma P.D., Heil E.L., Justo J.A. et al. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Version 4.0. Clin Infect Dis 2024:ciae403. Online ahead of print. DOI: 10.1093/cid/ciae403

11. Kadri S.S., Adjemian J., Lai Y.L. et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 2018;67(12):1803–14. DOI: 10.1093/cid/ciy378

12. Stover C.K., Pham X.Q., Erwin A.L. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000;406(6799):959–64. DOI: 10.1038/35023079. PMID: 10984043

13. Wu W., Huang J., Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: regulation and therapeutic implications. Microb Biotechnol 2024;17(5):e14487. DOI: 10.1111/1751-7915.14487

14. Skoglund E., Abodakpi H., Rios R. et al. In vivo resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa arising by AmpC- and non-AmpC-mediated pathways. Case Rep Infect Dis 2018;2018:9095203. DOI: 10.1155/2018/9095203

15. Ruedas-López A., Alonso-García I., Lasarte-Monterrubio C. et al. Selection of AmpC β-lactamase variants and metallo-β-lactamases leading to ceftolozane/tazobactam and ceftazidime/avibactam resistance during treatment of MDR/XDR Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2022;66(2):e0206721. DOI: 10.1128/AAC.02067-21

16. Khan A.U., Maryam L., Zarrilli R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 2017;17(1):101–12. DOI: 10.1186/s12866-017-1012-8

17. Falcone M., Tiseo G., Antonelli A. et al. Clinical features and outcomes of bloodstream infections caused by New Delhi metallo-β-lactamase-producin Enterobacterales during a regional outbreak. Open Forum Infect Dis 2020;7(2):ofaa011. DOI: 10.1093/ofid/ofaa011

18. Ramsey C., MacGowan A.P. A review of the pharmacokinetics and pharmacodynamics of aztreonam. J Antimicrob Chemother 2016;71(10):2704–12. DOI: 10.1093/jac/dkw231

19. Edelstein M.V., Sukhorukova M.V., Skleenova E.Yu. et al. and “MARATHON” study group. Antimicrobial resistance of nosocomial Pseudomonas aeruginosa isolates in Russia: results of multicenter epidemiological study “MARATHON” 2013–2014. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2017;19(1):37–41. (In Russ.).

20. Bush K., Bradford P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol 2019;17(5):295–306. DOI: 10.1038/s41579-019-0159-8

21. Mauri C., Maraolo A.E., Di Bella S. et al. The revival of aztreonam in combination with avibactam against metallo-β-lactamaseproducing gram-negatives: a systematic review of in vitro studies and clinical cases. Antibiotics (Basel) 2021;10(8):1012. DOI: 10.3390/antibiotics10081012

22. Karlowsky J.A., Kazmierczak K.M. de Jonge B.L.M. et al. In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother 2017;61(9):e00472–17. DOI: 10.1128/AAC.00472-17.

23. Livermore D.M., Warner M., Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother 2013;68(10):2286–90. DOI: 10.1093/jac/dkt178

24. Heo Y.A. Imipenem/cilastatin/relebactam: a review in gram-negative bacterial infections. Drugs 2021;81(3):377–88. DOI: 10.1007/s40265-021-01471-8

25. Hujer A.M., Bethel C.R., Taracila M.A. et al. Imipenem/relebactam resistance in clinical isolates of extensively drug resistant Pseudomonas aeruginosa: inhibitor-resistant β-lactamases and their increasing importance. Antimicrob Agents Chemother 2022;66(5):e0179021. DOI: 10.1128/aac.01790-21

26. Lee S.Y., Gill C.M., Nicolau D.P.; ERACE-PA Global Study Group. Activity of novel β-lactam/β-lactamase inhibitor combinations against serine carbapenemase-producing carbapenemresistant Pseudomonas aeruginosa. J Antimicrob Chemother 2023;78(12):2795–800. DOI: 10.1093/jac/dkad225

27. Motsch J., Murta de Oliveira C., Stus V. et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020;70(9):1799–808. DOI: 10.1093/cid/ciz530

28. Titov I., Wunderink R.G., Roquilly A. et al. Randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/ relebactam versus piperacillin/tazobactam in adults with hospitalacquired or ventilator-associated bacterial pneumonia (RESTORE-IMI2 Study). Clin Infect Dis 2021;73(11):e4539–e48. DOI: 10.1093/cid/ciaa803

29. Roberts J.A., Nicolau D.P., Martin-Loeches I. et al. Imipenem/cilastatin/relebactam efficacy, safety and probability of target attainment in adults with hospital-acquired or ventilator-associated bacterial pneumonia among patients with baseline renal impairment, normal renal function, and augmented renal clearance. JAC Antimicrob Resist 2023;5(2):dlad011. DOI: 10.1093/jacamr/dlad011

30. Shields R.K., Stellfox M.E., Kline E.G. et al. Evolution of imipenem-relebactam resistance following treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia. Clin Infect Dis 2022;75(4):710–4. DOI: 10.1093/cid/ciac097

31. Petty L.A., Henig O., Patel T.S. et al. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriaceae. Infect Drug Resist 2018;11:1461–72. DOI: 10.2147/IDR.S150447

32. Shoulders B.R., Casapao A.M., Venugopalan V. An update on existing and emerging data for meropenem-vaborbactam. Clin Ther 2020;42(4):692–702. DOI: 10.1016/j.clinthera.2020.01.023

33. López Montesinos I., Montero M., Sorlí L., Horcajada J.P. Ceftolozane-tazobactam: when, how and why using it? Rev Esp Quimioter 2021;34 Suppl 1(Suppl1):35–7. DOI: 10.37201/req/s01.10.2021

34. McCreary E.K., Heil E.L., Tamma P.D. New perspectives on antimicrobial agents: cefiderocol. Antimicrob Agents Chemother 2021;65(8):e0217120. DOI: 10.1128/aac.02171-20

35. Ito A., Sato T., Ota M. et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gramnegative bacteria. Antimicrob Agents Chemother 2017;62(1):e01454–17. DOI: 10.1128/AAC.01454-17

36. Ito A., Nishikawa T., Matsumoto S. et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016;60(12):7396–401. DOI: 10.1128/AAC.01405-16

37. Doi, Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 2019;69(Suppl 7):S565–75. DOI: 10.1093/cid/ciz830

38. Kayama S., Kawakami S., Kondo K. et al. In vitro activity of cefderocol against carbapenemase-producing and meropenemnon-susceptible Gram-negative bacteria collected in the Japan Antimicrobial Resistant Bacterial Surveillance. J Glob Antimicrob Resist 2024;38:12–20. DOI: 10.1016/j.jgar.2024.05.009

39. Kang D., Kirienko N.V. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol 2018;56(7):449–57. DOI: 10.1007/s12275-018-8114-3

40. Pybus C.A., Felder-Scott C., Obuekwe V., Greenberg D.E. Cefiderocol retains antibiofilm activity in multidrug-resistant gram-negative pathogens. Antimicrob Agents Chemother 2021;65(2):e01194–20. DOI: 10.1128/AAC.01194-20

41. Gomis-Font M.A., Sastre-Femenia M.À. Taltavull B. et al. In vitro dynamics and mechanisms of cefiderocol resistance development in wild-type, mutator and XDR Pseudomonas aeruginosa. J Antimicrob Chemother 2023;78(7):1785–94. DOI: 10.1093/jac/dkad172

42. Del Pozo J.L., Patel R. Ceftobiprole medocaril: a new generation beta-lactam. Drugs Today (Barc) 2008;44(11):801–25. DOI: 10.1358/dot.2008.44.11.1264007

43. El Solh A. Ceftobiprole: a new broad spectrum cephalosporin. Expert Opin Pharmacother 2009;10(10):1675–86. DOI: 10.1517/14656560903048967

44. Abbanat D., Shang W., Amsler K. et al. Evaluation of the in vitro activities of ceftobiprole and comparators in staphylococcal colony or microtitre plate biofilm assays. Int J Antimicrob Agents DOI: 10.1016/j.ijantimicag.2013.09.013

45. Rachina S.A., Fedina L.V., Stafeev A.N. et al. Ceftobiprol medokaril: clinical and pharmacological characteristics and clinical application possibilities. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2024;26(3):302–10. (In Russ.). DOI: 10.36488/cmac.2024.3.302-310

46. State register of medicinal products. Available at: https://grls.rosminzdrav.ru/default.aspx. Date of accessed: 10.06.2024. (In Russ.).

47. Community-acquired pneumonia in adults. Clinical guidelines of the Ministry of Health of Russia. 2024. Available at: https://spulmo.ru/upload/KR-vnebolnichnaya-pnevmoniya-u-vzroslyh-2024.pdf (In Russ.).

48. Kresken M., Körber-Irrgang B., Läuffer J. et al. In vitro activities of ceftobiprole combined with amikacin or levofloxacin against Pseudomonas aeruginosa: evidence of a synergistic effect using time-kill methodology. Int J Antimicrob Agents 2011;38(1):70–5. DOI: 10.1016/j.ijantimicag.2011.01.028

49. Kozlov R.S., Azizov I.S., Dehnich A.V. et al. In vitro sensitivity to biapenem and other carbapenems of clinical isolates of Pseudomonas aeruginosa, Acinetobacter spp. and representatives of the order Enterobacterales isolated from hospitalized patients in various regions of Russia. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2021;23(3):280–91. (In Russ.). DOI: 10.36488/cmac.2021.3.280-291

50. Zyryanov S.K., Butranova O.I., Kazanova A.M. Pharmacokinetics of Biapenem in Patients in Critical Conditions.Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy 2023;25(3):260–5. (In Russ.). DOI: 10.36488/cmac.2023.3.260-265

51. The SCAT program (Antimicrobial Therapy Control Strategy) in the provision of inpatient medical care: Russian clinical guidelines. Ed. by S.V. Yakovlev, N.I. Briko, S.V. Sidorenko et al. Moscow: Pero, 2018. 156 p. (In Russ.). Available by: http://antimicrob.net/wp-content/uploads/skat.pdf

52. Khalili Y., Yekani M., Goli H.R., Memar M.Y. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 2019;66(4):529–40. DOI: 10.1556/030.66.2019.036

53. Campana E.H., Xavier D.E., Petrolini F.V. et al. Carbapenemresistant and cephalosporin-susceptible: a worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil. Braz J Infect Dis 2017;21(1):57–62. DOI: 10.1016/j.bjid.2016.10.008

54. Zeng Z.R., Wang W.P., Huang M. et al. Mechanisms of carbapenem resistance in cephalosporin-susceptible Pseudomonas aeruginosa in China. Diagn Microbiol Infect Dis 2014;78(3):268–70. DOI: 10.1016/j.diagmicrobio.2013.11.014

55. López Montesinos I., Gómez-Zorrilla S., Palacios-Baena Z.R. et al. Aminoglycoside or polymyxin monotherapy for treating complicated urinary tract infections caused by extensively drug-resistant Pseudomonas aeruginosa: a propensity score-adjusted and matched cohort study. Infect Dis Ther 2022;11(1):335–50. DOI: 10.1007/s40121-021-00570-z

56. European Committee on Antimicrobial Susceptibility Testing. Tables of breakpoints for interpretation of MICs and zone diameters. Version 15.0, 2025. Available at: https://www.eucast.org

57. Sorlí L., Luque S., Li J. et al. Colistin for the treatment of urinary tract infections caused by extremely drug-resistant Pseudomonas aeruginosa: dose is critical. J Infect 2019;79(3):253–61. DOI: 10.1016/j.jinf.2019.06.011

58. Ito R., Mustapha M.M., Tomich A.D. et al. Widespread fosfomycin resistance in gram-negative bacteria attributable to the chromosomal fosA gene. mBio 2017;8(4):e00749–17. DOI: 10.1128/mBio.00749-17

59. Paul M., Carrara E., Retamar P. et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect 2022;28(4):521–47. DOI: 10.1016/j.cmi.2021.11.025

60. EUCAST Clinical Breakpoint Tables v. 15.0, valid from 2025-01-01. Available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf

61. Gutiérrez-Gutiérrez B., Salamanca E., de Cueto M. et al.; Investigators from the REIPI/ESGBIS/INCREMENT Group. A predictive model of mortality in patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae. Mayo Clin Proc 2016;91(10):1362–71. DOI: 10.1016/j.mayocp.2016.06.024

62. Tamma P.D., Cosgrove S.E., Maragakis L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012;25(3):450–70. DOI: 10.1128/CMR.05041-11

63. Oliota A.F., Penteado S.T., Tonin F.S. et al. Nephrotoxicity prevalence in patients treated with polymyxins: a systematic review with meta-analysis of observational studies. Diagn Microbiol Infect Dis 2019;94(1):41–9. DOI: 10.1016/j.diagmicrobio.2018.11.008

64. Vidal L., Gafter-Gvili A., Borok S. et al. Efficacy and safety of aminoglycoside monotherapy: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 2007;60(2):247–57. DOI: 10.1093/jac/dkm193

65. Sytov A.V., Epifanova N.Yu., Yukhina A.I., Grishenkin I.Yu. Polymyxin B neurotoxicity as manifestation of a serious life-threatening adverse reaction: clinical case. Podderzhivayushchaya terapiya v onkologii = Supportive Therapy in Oncology 2024;1(1): 59–64. (In Russ.). DOI: 10.17650/3034-2473- 2024-1-1-59-64

66. Falagas M.E., Kasiakou S.K. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 2006;10(1):R27. DOI: 10.1186/cc3995

67. Soroudi S., Mousavi G., Jafari F., Elyasi S. Prevention of colistininduced neurotoxicity: a narrative review of preclinical data. Naunyn Schmiedebergs Arch Pharmacol 2023;397(6):3709–27. DOI: 10.1007/s00210-023-02884-w

68. Pogue J.M., Kaye K.S., Veve M.P. et al. Ceftolozane/tazobactam vs polymyxin или aminoglycoside-based regimensions for the treatment of drug-resistant Pseudomonas aeruginosa. Clin Infect Dis 2020;71(2):304–10. DOI: 10.1093/cid/ciz816

69. Rigatto M.H., Vieira F.J., Antochevis L.C. et al. Polymyxin B in combination with antimicrobials lacking in vitro activity versus polymyxin B in monotherapy in critically ill patients with acinetobacter baumannii or Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2015t;59(10):6575–80. DOI: 10.1128/AAC.00494-15

70. Kaye K.S., Marchaim D., Thamlikitkul V. et al. Results from the OVERCOME Trial: colistin monotherapy versus combination therapy for the treatment of pneumonia or bloodstream infection due to extensively drug resistant Gram-negative bacilli. 31st European congress of clinical microbiology & infectious diseases. European Society of Infectious Disease, Basel, 2021.

71. Paul M., Daikos G.L., Durante-Mangoni E. et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant gram-negative bacteria: an openlabel, randomised controlled trial. Lancet Infect Dis 2018;18(4):391–400. DOI: 10.1016/S1473-3099(18)30099-9

72. Beloborodov V.B., Goloshchapov O.V., Gusarov V.G. et al. Diagnosis and antimicrobial therapy of infections caused by polyresistant microorganisms (updated 2024). Vestnik anesteziologii i reanimatologii = Messenger of Anesthesiology and Registration 2025;22(2):149–89. (In Russ.). DOI: 10.24884/2078-5658-2025-22-2-149-189


Review

For citations:


Epifanova N.Yu. Modern approaches to the treatment of infections caused by Pseudomonas aeruginosa with multiple antimicrobial resistance. What a practicing physician should know. Supportive Therapy in Oncology. 2025;2(2):44-60. (In Russ.) https://doi.org/10.17650/3034-2473-2025-2-2-44-60

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-2473 (Print)
ISSN 3034-3178 (Online)