Preview

Supportive Therapy in Oncology

Advanced search

What do we know about neurotoxicity?

https://doi.org/10.17650/3034-2473-2025-2-1-13-20

Abstract

Neurologic symptoms caused by drug antitumor therapy remain a problem. The severity and frequency of development of this type of complications depend on the drug group, dose, and duration of use. Effective treatment requires a proper approach to the diagnosis and treatment of toxic reactions. Therapy of neurologic complications during antitumor drug therapy should be based on personalized approach due to the difference in mechanisms of development and degree of toxicity for each drug and particular patient.
Literature data on the main groups of neurotoxic drugs, mechanisms of their action and treatment of neurological complications during their administration are reviewed.

About the Authors

D. M. Mulyukova
Bashkir State Medical University, Ministry of Health Russia
Russian Federation

Diana M. Mulyukova

3 Lenina St., Ufa 450008



D. D. Sakaeva
Bashkir State Medical University, Ministry of Health Russia
Russian Federation

Dina D. Sakaeva 

3 Lenina St., Ufa 450008



References

1. Common Terminology Criteria for Adverse Events (СТСАЕ). Version 5.0. 2017. Available at: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf

2. Tkachenko E.V., Andreev V.V., Yatsenko A.V. et al. Neurotoxicity as a side effect of administration of modern cytostatic drugs, diagnosis and treatment. Post-cytostatic polyneuropathies: pathogenesis, clinical manifestations, treatment tactics: textbook for doctors and students in the system of higher and continuous professional education. Saint Petersburg: NMITS onkologii im. N.N. Petrova, 2020. 98 p. (In Russ.).

3. Ostroumova O.D., Shikh E.V., Rebrova E.V. et al. Drug-induced toxic optic neuropathy. Vestnik oftalmologii = Russian Annals of Ophthalmology 2020;136(4):156–64. (In Russ.). DOI: 10.17116/oftalma2020136041156

4. Sitkali I.V., Kolokolov O.V. Paraneoplastic neurological syndrome: focus on the involvement of the peripheral nervous system (review). Saratovskiy nauchno-meditsinskiy zhurnal = Saratov Journal of Medical Scientific Research 2017;13(1):174–80. (In Russ.).

5. Vatutin N.T., Sklyannaya E.V., El-Khatib M.A. et al. Peripheral neurophathies induced by various chemotherapeutic agents: current state of the problem. Gematologiya i transfuziologiya = Russian Journal of Hematology and Transfusiology 2016;61(2):105–9. (In Russ.). DOI: 10.18821/0234-5730-2016-61-2-105-109

6. McWhinney S.R., Goldberg R.M., McLeod H.L. Platinum neurotoxicity pharmacogenetics Mol Cancer Ther 2009;8(1):10–6. DOI: 10.1158/1535-7163.MCT-08-0840

7. Latipova D.H., Andreev V.V., Maslova D.A. et al. Neurological complications. Practical recommendations of the Russian Society of Clinical Oncology. Part 2. Zlokachestvenniye opukholi = Malignant Tumors 2024;14(3s2):354–64. (In Russ.). DOI: https://doi.org/10.18027/2224-5057-2024-14-3s2-2-20

8. Meshcheryakova A.V., Zinchenko A.A. Chemoendocrine neuropathy as a complication of anticancer therapy. a review of the literature. Sinergiya nauk = Synergy of Sciences 2017;15:500–12. (In Russ.).

9. Cimbro E., Dessì M., Ziranu P. Early taxane exposure and neurotoxicity in breast cancer patients. Support Care Cancer 2024;32(10):709. DOI: 10.1007/s00520-024-08908-2

10. Dzhanybekova I.A. Analysis of the significance of blood-brain barrier in acute lymphoblastic leukemia and central nervous system leukemia. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Meditsina. Farmatsia = Belgorod State University Scientific bulletin. Medicine. Pharmacy 2018;41(4):568–75. DOI: 10.18413/2075-4728-2018-41-4-568-575. (In Russ.).

11. El-Sawaf E.S., El Maraghy N.N., El-Abhar H.S. et al. Melatonin mitigates vincristine-induced peripheral neuropathy by inhibiting TNF-α/astrocytes/microglial cells activation in the spinal cord of rats, while preserving vincristine’s chemotherapeutic efficacy in lymphoma cells. Toxicol Appl Pharmacol 2024;492:117134. DOI: 10.1016/j.taap.2024.117134

12. Penzin O.V., Shvyrev S.L., Zarubina T.V. Results of implementation in the clinical practice the prognostic model for assessing the risk development of mielotoxic complications of chemotherapy. Vestnyk novykh meditsinskikh tekhnologiy = Journal of New Medical Technologies 2019;26(1):112–8. (In Russ.). DOI: 10.24411/1609-2163-2019-16061

13. Fukuda Y., Li Y., Segal R.A. A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci 2017;11:481. DOI: 10.3389/fnins.2017.00481

14. Zvonkov E.E., Koroleva D.A., Gabeeva N.G. et al. High-dose chemotherapy for primary diffuse large b-cell lymphoma of the central nervous system. Interim results of the CNS-2015 protocol. Gematologiya i transfuziologiya = Russian Journal of Hematology and Transfusiology 2019;64(4):447–61. (In Russ.). DOI: 10.35754/0234-5730-2019-64-4-447-461

15. Kumar N., Kalaiselvan V., Arora M.K. Neuronal toxicity of monoclonal antibodies (mAbs): an analysis of post-marketing reports from FDA Adverse Event Reporting System (FAERS) safety database. Eur J Clin Pharmacol 2024;80(11):1685–95. DOI: 10.1007/s00228-024-03727-0

16. Farshchian N., Alavi A., Heydarheydari S., Moradian N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother Pharmacol 2018;82(5):787–93. DOI: 10.1007/s00280-018-3664-y

17. Nevins S., McLoughlin C.D., Oliveros A. et al. Nanotechnology approaches for prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors. Small 2024;20(41):e2300744. DOI: 10.1002/smll.202300744

18. Ziv-Polat O., Shahar A., Levy I. et al. The role of neurotrophic factors conjugated to iron oxide nanoparticles in peripheral nerve regeneration: in vitro studies. Biomed Res Int 2014;2014:267808. DOI: 10.1155/2014/267808

19. Lopes C.D.F., Gonçalves N.P., Gomes C.P. et al. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials 2017;121:83–96. DOI: 10.1016/j.biomaterials.2016.12.025

20. Kuo Y.C., Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. Mater Sci Eng C Mater Biol Appl 2017;77:680–9. DOI: 10.1016/j.msec.2017.03.303

21. Guan Q., Li Y., Zhang H. et al. Laser-responsive multi-functional nanoparticles for efficient combinational chemo-photodynamic therapy against breast cancer. Colloids Surf B Biointerfaces 2022;216:112574. DOI: 10.1016/j.colsurfb.2022.112574

22. Zeng Z., He X., Li C. et al. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials 2021;271:120753. DOI: 10.1016/j.biomaterials.2021.120753

23. Kuthati Y., Busa P., Tummala S. et al. Mesoporous polydopamine nanoparticles attenuate morphine tolerance in neuropathic pain rats by inhibition of oxidative stress and restoration of the endogenous antioxidant system. Antioxidants (Basel) 2021;10(2):195. DOI: 10.3390/antiox10020195

24. Tran Q., Pham T.L., Shin H.J. et al. Targeting spinal microglia with fexofenadine-loaded nanoparticles prolongs pain relief in a rat model of neuropathic pain. Nanomedicine 2022;44:102576. DOI: 10.1016/j.nano.2022.102576


Review

For citations:


Mulyukova D.M., Sakaeva D.D. What do we know about neurotoxicity? Supportive Therapy in Oncology. 2025;2(1):13-20. (In Russ.) https://doi.org/10.17650/3034-2473-2025-2-1-13-20

Views: 128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-2473 (Print)
ISSN 3034-3178 (Online)